These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH). Author: Amstaetter K, Borch T, Larese-Casanova P, Kappler A. Journal: Environ Sci Technol; 2010 Jan 01; 44(1):102-8. PubMed ID: 20039739. Abstract: The redox state and speciation of the metalloid arsenic (As) determine its environmental fate and toxicity. Knowledge about biogeochemical processes influencing arsenic redox state is therefore necessary to understand and predict its environmental behavior. Here we quantified arsenic redox changes by pH-neutral goethite [alpha-Fe(III)OOH] mineral suspensions amended with Fe(II) using wet-chemical and synchrotron X-ray absorption (XANES) analysis. Goethite itself did not oxidize As(III) and, in contrast to thermodynamic predictions, Fe(II)-goethite systems did not reduce As(V). However, we observed rapid oxidation of As(III) to As(V) in Fe(II)-goethite systems. Mössbauer spectroscopy showed initial formation of (57)Fe-goethite after (57)Fe(II) addition plus a so far unidentified additional Fe(II) phase. No other Fe(III) phase could be detected by Mössbauer, EXAFS, SEM, XRD, or HR-TEM. This suggests that reactive Fe(III) species form as an intermediate Fe(III) phase upon Fe(II) addition and electron transfer into bulk goethite but before crystallization of the newly formed Fe(III) as goethite. In summary this study indicates that in the simultaneous presence of Fe(III) oxyhydroxides and Fe(II), as commonly observed in environments inhabited by iron-reducing microorganisms, As(III) oxidation can occur. This potentially explains the presence of As(V) in reduced groundwater aquifers.[Abstract] [Full Text] [Related] [New Search]