These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. Author: Mahler B, Lequeux N, Dubertret B. Journal: J Am Chem Soc; 2010 Jan 27; 132(3):953-9. PubMed ID: 20043669. Abstract: We report the synthesis of CdSe/CdS semiconductor core/shell nanocrystals with very thick (5 nm) CdS shells. As in the case of core CdSe nanocrystals, we show that a thick-shell CdSe/CdS core/shell structure can be synthesized in either a pure wurtzite (W) or a zinc-blende (ZB) crystal structure. While the growth of thick-shell wurtzite CdSe/CdS is quite straightforward, we observe that the growth of a CdS shell on zinc-blende CdSe cores is more difficult and leads to wurtzite/zinc-blende polytypism when primary amines are present during the shell formation. Using absorption spectra analysis to differentiate zinc blende from wurtzite CdSe, we show that primary amines can induce a nearly complete structural transformation of CdSe ZB cores into W cores. This better understanding of the CdSe ligand-dependent crystal structural evolution during shell growth is further used to grow large (10 nm)-diameter perfect zinc-blende CdSe core crystals emitting above 700 nm, and perfect ZB thick-shell CdSe/CdS nanocrystals. We observed that all thick-shell CdSe/CdS QDs have extremely reduced blinking events compared to thin-shell QDs, without any significant influence of crystalline structure and polytypism.[Abstract] [Full Text] [Related] [New Search]