These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Automated classification of multi-spectral MR images using Linear Discriminant Analysis.
    Author: Lin GC, Wang WJ, Wang CM, Sun SY.
    Journal: Comput Med Imaging Graph; 2010 Jun; 34(4):251-68. PubMed ID: 20044236.
    Abstract:
    Magnetic resonance imaging (MRI) is a valuable instrument in medical science owing to its capabilities in soft tissue characterization and 3D visualization. A potential application of MRI in clinical practice is brain parenchyma classification. This work proposes a novel approach called "Unsupervised Linear Discriminant Analysis (ULDA)" to classify and segment the three major tissues, i.e. gray matter (GM), white matter (WM) and cerebral spinal fluid (CSF), from a multi-spectral MR image of the human brain. The ULDA comprises two processes, namely Target Generation Process (TGP) and Linear Discriminant Analysis (LDA) classification. TGP is a fuzzy-set process that generates a set of potential targets from unknown information, and applies these targets to train the optimal division boundary by LDA, such that three tissues GM, WM and CSF are separated. Finally, two sets of images, namely computer-generated phantom images and real MR images are used in the experiments to evaluate the effectiveness of ULDA. Experiment results reveal that UDLA segments a multi-spectral MR image much more effectively than either FMRIB's Automated Segmentation Tool (FAST) or Fuzzy C-means (FC).
    [Abstract] [Full Text] [Related] [New Search]