These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metal ion release from bearing wear and corrosion with 28 mm and large-diameter metal-on-metal bearing articulations: a follow-up study. Author: Vendittoli PA, Roy A, Mottard S, Girard J, Lusignan D, Lavigne M. Journal: J Bone Joint Surg Br; 2010 Jan; 92(1):12-9. PubMed ID: 20044673. Abstract: We have updated our previous randomised controlled trial comparing release of chromium (Cr) and cobalt (Co) ions and included levels of titanium (Ti) ions. We have compared the findings from 28 mm metal-on-metal total hip replacement, performed using titanium CLS/Spotorno femoral components and titanium AlloFit acetabular components with Metasul bearings, with Durom hip resurfacing using a Metasul articulation or bearing and a titanium plasma-sprayed coating for fixation of the acetabular component. Although significantly higher blood ion levels of Cr and Co were observed at three months in the resurfaced group than in total hip replacement, no significant difference was found at two years post-operatively for Cr, 1.58 microg/L and 1.62 microg/L respectively (p = 0.819) and for Co, 0.67 microg/L and 0.94 microg/L respectively (p = 0.207). A steady state was reached at one year in the resurfaced group and after three months in the total hip replacement group. Interestingly, Ti, which is not part of the bearing surfaces with its release resulting from metal corrosion, had significantly elevated ion levels after implantation in both groups. The hip resurfacing group had significantly higher Ti levels than the total hip replacement group for all periods of follow-up. At two years the mean blood levels of Ti ions were 1.87 microg/L in hip resurfacing and and 1.30 microg/L in total hip replacement (p = 0.001). The study confirms even with different bearing diameters and clearances, hip replacement and 28 mm metal-on-metal total hip replacement produced similar Cr and Co metal ion levels in this randomised controlled trial study design, but apart from wear on bearing surfaces, passive corrosion of exposed metallic surfaces is a factor which influences ion concentrations. Ti plasma spray coating the acetabular components for hip resurfacing produces significantly higher release of Ti than Ti grit-blasted surfaces in total hip replacement.[Abstract] [Full Text] [Related] [New Search]