These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of the degree of dentine mineralization on pulp chamber temperature increase during resin-based composite (RBC) light-activation.
    Author: da Silva EM, Penelas AG, Simão MS, Filho JD, Poskus LT, Guimarães JG.
    Journal: J Dent; 2010 Apr; 38(4):336-42. PubMed ID: 20045036.
    Abstract:
    OBJECTIVES: To analyse the influence of the degree of dentine mineralization on the pulp chamber temperature increase during composite light-activation. METHODS: Dentine discs (2mm thick) obtained from recently extracted teeth or those with extensive dentine sclerosis were analysed by FT-IR spectrometry in order to choose the two discs with the greatest difference in the degree of mineralization. A model tooth was set up with the dentine discs between a molar with the pulp chamber exposed and a crown with a standardized class II cavity. A K-type thermocouple was introduced into the molar root until it came into contact with the dentine discs and the cavity was filled with P60 resin composite. The temperature rise was measured for 120s after light-activation began: Standard (S) 600 mW/cm(2)/40s; Ramp (R) 0-->800 mW/cm(2)/10s+800 mW/cm(2)/10s; Boost (B) 85 0mW/cm(2)/10s and LED (L) 1.300 mW/cm(2)/40s (n=10). The same protocol was repeated after grinding the dentine discs to 1.0 and 0.5mm thickness. RESULTS: The temperature increase was significantly higher in dentine with high degree of mineralization (p<0.05). With respect to the dentine thickness, the following result was found: 2mm<1mm<0.5mm (p<0.05). The light-activation mode also presented significant difference as follows: S>R=L>B (p<0.05). CONCLUSIONS: The higher the degree of dentine mineralization the greater the increase in pulp chamber temperature. The temperature increase was influenced by the light-polymerization mode and dentine thickness.
    [Abstract] [Full Text] [Related] [New Search]