These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Alexandrium minutum exposure upon physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas. Author: Haberkorn H, Lambert C, Le Goïc N, Guéguen M, Moal J, Palacios E, Lassus P, Soudant P. Journal: Aquat Toxicol; 2010 Apr 15; 97(2):96-108. PubMed ID: 20045204. Abstract: The effects of an artificial bloom of the toxin-producing dinoflagellate, Alexandrium minutum, upon physiological parameters of the Pacific oyster, Crassostrea gigas, were assessed. Diploid and triploid oysters were exposed to cultured A. minutum and compared to control diploid and triploid oysters fed T. Isochrysis. Experiments were repeated twice, in April and mid-May 2007, to investigate effects of maturation stage on oyster responses to A. minutum exposure. Oyster maturation stage, Paralytic Shellfish Toxin (PST) accumulation, as well as several digestive gland and hematological variables, were assessed at the ends of the exposures. In both experiments, triploid oysters accumulated more PSTs (approximately twice) than diploid oysters. Significant differences, in terms of phenoloxidase activity (PO) and reactive oxygen species (ROS) production of hemocytes, were observed between A. minutum-exposed and non-exposed oysters. PO in hemocytes was lower in oysters exposed to A. minutum than in control oysters in an early maturation stage (diploids and triploids in April experiment and triploids in May experiment), but this contrast was reversed in ripe oysters (diploids in May experiment). In the April experiment, granulocytes of oysters exposed to A. minutum produced more ROS than those of control oysters; however, in the May experiment, ROS production of granulocytes was lower in A. minutum-exposed oysters. Moreover, significant decreases in free fatty acid, monoacylglycerol, and diacylglycerol contents in digestive glands of oysters exposed to A. minutum were observed. Concurrently, the ratio of reserve lipids (triacylglycerol, ether glycerides and sterol esters) to structural lipids (sterols) decreased upon A. minutum exposure in both experiments. Also, several physiological responses to A. minutum exposure appeared to be modulated by maturation stage as well as ploidy of the oysters.[Abstract] [Full Text] [Related] [New Search]