These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Author: Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, Konishi I, Shiozawa T. Journal: Int J Cancer; 2010 Sep 01; 127(6):1332-46. PubMed ID: 20049841. Abstract: Histone acetylation/deacetylation controls chromatin activity and subsequent gene transcription. Recent studies demonstrated the activation of histone deacetylases (HDACs) in various human malignancies; however, the expression and function of HDACs in ovarian tumors are not fully understood. In this study, we examined the immunohistochemical expression of HDAC1, HDAC2 and HDAC3 using tissues obtained from 115 cases of ovarian tumors and compared it with that of Ki-67 (a growth marker), p21, and E-cadherin and clinicopathological parameters. In addition, we analyzed the effect of specific siRNA for HDAC1, HDAC2 and HDAC3 on the expression of cell cycle-related molecules and E-cadherin to clarify the functional difference among the 3 HDACs. The results indicated that the immunohistochemical expression of nuclear HDAC1, HDAC2 and HDAC3 proteins increased stepwise in benign, borderline and malignant tumors. The expression of HDAC1 and HDAC2 was correlated with Ki-67 expression and that of HDAC3 was inversely correlated with E-cadherin expression. Among the HDACs examined, only HDAC1 was associated with a poor outcome, when overexpressed. Treatment with HDAC inhibitors suppressed the proliferation of ovarian cancer cells in association with apoptosis. A specific siRNA for HDAC1 significantly reduced the proliferation of ovarian carcinoma cells via downregulation of cyclin A expression, but siRNA for HDAC3 reduced the cell migration with elevated E-cadherin expression. Our results suggested that HDAC1 plays an important role in the proliferation of ovarian cancer cells, whereas HDAC3 functions in cell adhesion and migration. Therefore, specific therapeutic approaches should be considered according to the HDAC subtypes.[Abstract] [Full Text] [Related] [New Search]