These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic cognitive sequelae after traumatic brain injury are not related to growth hormone deficiency in adults. Author: Pavlovic D, Pekic S, Stojanovic M, Zivkovic V, Djurovic B, Jovanovic V, Miljic N, Medic-Stojanoska M, Doknic M, Miljic D, Djurovic M, Casanueva F, Popovic V. Journal: Eur J Neurol; 2010 May; 17(5):696-702. PubMed ID: 20050894. Abstract: OBJECTIVE: The objective of the study was to asses the possible influence of hypothalamo-pituitary deficiencies, and growth hormone (GH) deficiency in particular, on cognition in adult patients with traumatic brain injury (TBI). TBI is a recently identified risk factor for cognitive deficits and hypopituitarism. Even the patients with favorable outcome after TBI may present with persistent bodily, psychosocial, and cognitive impairments, resembling patients with untreated partial or complete pituitary insufficiency. DESIGN: We performed retrospective and cross-sectional study of endocrine and cognitive function in TBI in 61 patients (aged 37.7 +/- 1.7 years) of both sexes (44 m,17 f), at least 1 year after TBI (3.9 +/- 0.6 years). Serum insulin-like growth factor 1 (IGF-I), thyroxin, thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (in men), prolactin, and cortisol were measured, and GH secretion was assessed by growth hormone releasing hormone (GHRH) + growth hormone releasing peptide-6 (GHRP-6) test. Cognitive function was assessed by using a standard neuropsychological battery. RESULTS: GH deficiency (GHD) and GH insufficiency (GHI) were found in 20 patients (32.8%). After adjustment for confounders [age, body mass index (BMI), education level, time elapsed from TBI], there were no significant differences in results of neuropsychological tests between patients with TBI with GHD, GHI, and normal GH secretion. There were no correlations of neuropsychological variables with stimulated peak GH secretion or IGF-I level. CONCLUSIONS: GHD persists long after the TBI, independently of trauma severity and age at traumatic event. GH secretion is more sensitive to TBI than other pituitary hormones. No evidence is found for an association of cognitive function impairment and somatotropic axis impairment in adult patients tested more than 1 year after the TBI.[Abstract] [Full Text] [Related] [New Search]