These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A validated stability-indicating LC method for acetazolamide in the presence of degradation products and its process-related impurities. Author: Srinivasu P, Subbarao DV, Vegesna RV, Sudhakar Babu K. Journal: J Pharm Biomed Anal; 2010 May 01; 52(1):142-8. PubMed ID: 20053517. Abstract: The objective of the current study was to develop a validated, specific and stability-indicating reverse phase liquid chromatographic method for the quantitative determination of acetazolamide and its related substances. The determination was done for an active pharmaceutical ingredient, its pharmaceutical dosage form in the presence of degradation products, and its process-related impurities. The drug was subjected to stress conditions of hydrolysis (acid and base), oxidation, photolysis and thermal degradation as per International Conference on Harmonization (ICH) prescribed stress conditions to show the stability-indicating power of the method. Significant degradation was observed during acid and base hydrolysis, and the major degradant was identified by LC-MS, FTIR and (1)H/(13)C NMR spectral analysis. The chromatographic conditions were optimized using an impurity-spiked solution and the generated samples were used for forced degradation studies. In the developed HPLC method, the resolution between acetazolamide and, its process-related impurities (namely imp-1, imp-2, imp-3, imp-4 and its degradation products) was found to be greater than 2. The chromatographic separation was achieved on a C18, 250mmx4.6mm, 5microm column. The LC method employed a linear gradient elution, and the detection wavelength was set at 254nm. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 99.6%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.[Abstract] [Full Text] [Related] [New Search]