These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of a high-activity mutant of human butyrylcholinesterase against (-)-cocaine.
    Author: Yang W, Xue L, Fang L, Chen X, Zhan CG.
    Journal: Chem Biol Interact; 2010 Sep 06; 187(1-3):148-52. PubMed ID: 20060817.
    Abstract:
    Cocaine addiction and overdose are a well-known public health problem. There is no approved medication available for cocaine abuse treatment. Our recently designed and discovered high-activity mutant (A199S/S287G/A328W/Y332G) of human butyrylcholinesterase (BChE) has been recognized to be worth exploring for clinical application in humans as a potential anti-cocaine medication. The catalytic rate constant (k(cat)) and Michaelis-Menten constant (K(M)) for (-)-cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BChE (without fusion with any other peptide) have been determined to be 3,060 min(-1) and 3.1 microM, respectively, in the present study. The determined kinetic parameters reveal that the un-fused A199S/S287G/A328W/Y332G mutant has a approximately 1,080-fold improved catalytic efficiency (k(cat)/K(M)) against (-)-cocaine compared to the wild-type BChE. The approximately 1,080-fold improvement in the catalytic efficiency of the un-fused A199S/S287G/A328W/Y332G mutant is very close to the previously reported the approximately 1,000-fold improvement in the catalytic efficiency of the A199S/S287G/A328W/Y332G mutant fused with human serum albumin. These results suggest that the albumin fusion did not significantly change the catalytic efficiency of the BChE mutant while extending the plasma half-life. In addition, we have also examined the catalytic activities of the A199S/S287G/A328W/Y332G mutant against two other substrates, acetylthiocholine (ATC) and butyrylthiocholine (BTC). It has been shown that the A199S/S287G/A328W/Y332G mutations actually decreased the catalytic efficiencies of BChE against ATC and BTC, while considerably improving the catalytic efficiency of BChE against (-)-cocaine.
    [Abstract] [Full Text] [Related] [New Search]