These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The alternatively spliced murine pregnane X receptor isoform, mPXR(delta171-211) exhibits a repressive action. Author: Matic M, Corradin AP, Tsoli M, Clarke SJ, Polly P, Robertson GR. Journal: Int J Biochem Cell Biol; 2010 May; 42(5):672-82. PubMed ID: 20060928. Abstract: The orphan nuclear receptor pregnane X receptor regulates enzymes and transport proteins involved in the detoxification and clearance of numerous endobiotic and xenobiotic compounds, including pharmaceutical agents. Multiple alternatively spliced pregnane X receptor isoforms have been identified which are significantly expressed in humans and mice (up to 30% of the total pregnane X receptor transcript), however, little is known about their biological action. We explored functional differences between the major mouse pregnane X receptor isoforms mPXR(431) and mPXR(Delta171-211) that lacks 41 amino acids adjacent to the ligand-binding pocket. Transient transfection assays showed that mPXR(Delta171-211) reduced the basal transcription of cytochrome P450 3A4 and the drug transporter P-glycoprotein/Multi Drug Resistance Protein 1 and directly repressed the regulatory effects of mPXR(431) on these genes. Replacement of the mPXR(Delta171-211) DNA-binding domain with that of GAL4 showed mPXR(Delta171-211) retained its repressive role independent of binding to PXR responsive elements located within the cytochrome P450 3A4 and Multi Drug Resistance Protein 1 regulatory regions. Use of the histone deacetylase inhibitor, trichostatin A, demonstrated that the repressive function of mPXR(Delta171-211) acts independently of histone acetylation state. Protein interaction assays revealed mPXR(Delta171-211) and mPXR(431) differentially bind the obligatory heterodimer partner retinoid X receptor. Furthermore, mPXR(431) and mPXR(Delta171-211) proteins could heterodimerize. These studies demonstrate that the variant mouse PXR isoform, mPXR(Delta171-211), has a distinct repressive function from mPXR(431) in regulating genes encoding important drug metabolizing enzymes and transport proteins.[Abstract] [Full Text] [Related] [New Search]