These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of matrix composition, microstructure, and viscoelasticity on the behaviors of vocal fold fibroblasts cultured in three-dimensional hydrogel networks. Author: Farran AJ, Teller SS, Jha AK, Jiao T, Hule RA, Clifton RJ, Pochan DP, Duncan RL, Jia X. Journal: Tissue Eng Part A; 2010 Apr; 16(4):1247-61. PubMed ID: 20064012. Abstract: Vocal fold diseases and disorders are difficult to treat surgically or therapeutically. Tissue engineering offers an alternative strategy for the restoration of functional vocal folds. As a first step toward vocal fold tissue engineering, we investigated the responses of primary vocal fold fibroblasts (PVFFs) to two types of collagen and hyaluronic acid (HA)-based hydrogels that are compositionally similar, but structurally variable and mechanically different. Type A hydrogels were composed of mature collagen fibers reinforced by oxidized HA, whereas type B hydrogels contained immature collagen fibrils interpenetrated in an amorphous, covalently cross-linked HA matrix. PVFFs encapsulated in either matrix adopted a fibroblastic morphology and expressed genes related to important extracellular matrix proteins. DNA analysis indicated a linear growth profile for cells encapsulated in type B gels from day 0 to 21, in contrast to an initial dormant, nonproliferative period from day 0 to 3 experienced by cells in type A gels. At the end of the culture, similar DNA content was detected in both types of constructs. A reduction in collagen content was observed for both types of constructs after 28 days of culture, with type A constructs generally retaining higher amounts of collagen than type B constructs. The HA content in the constructs decreased steadily throughout the culture, with type A constructs consistently exhibiting less HA than type B constructs. Using the torsional wave analysis, we found that the elastic moduli for type A constructs decreased sharply during the first week of culture, followed by 2 weeks of matrix stabilization without significant changes in matrix stiffness. Conversely, the elastic modulus for type B constructs increased moderately over time. It is postulated that PVFFs residing in gels alter the matrix organization, chemical compositions, and viscoelasticity through cell-mediated remodeling processes.[Abstract] [Full Text] [Related] [New Search]