These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subcellular localization of rat gastric phospholipase A2.
    Author: Grataroli R, Termine E, Portugal H, Pauli AM, Lafont H, Nalbone G.
    Journal: Biochim Biophys Acta; 1991 Mar 12; 1082(2):130-5. PubMed ID: 2007176.
    Abstract:
    In the present study, we have performed experiments to gain some insight into the subcellular localization and biochemical properties of gastric mucosal phospholipase A2. After classical subcellular fractionation of whole glandular stomach mucosa, we found that gastric phospholipase A2 was essentially enriched in the 105,000 x g pellet that contains microsomes and plasma membranes. Except for the cytosol, all the subcellular fractions exhibited similar phospholipase A2 activity (i.e., optimum of pH, calcium dependence, apparent Km and positional specificity). The high-speed pellet was further characterized by ultracentrifugation on a sucrose gradient. Data showed that the sedimentation profile of phospholipase A2 was quite similar to those of plasma membrane markers and more specifically to an apical membrane marker. These results, taken together, showed that a gastric phospholipase A2 is distributed among the various subcellular fractions (as a result of cross-contamination) together with the membrane fraction on which it is associated. It is proposed that this fraction is the apical plasma membrane which would be the main site of phospholipase A2 action for arachidonic acid release. Lysophospholipase showed the same sedimentation profile as phospholipase A2, whereas acyl CoA-lysophosphatidylcholine: acyltransferase mainly sedimented with heavy microsomes. The substrate specificity of the enzyme was assessed by endogenous hydrolysis of gastric mucosal phospholipids. We were able to show that the enzyme acts at nearly the same rate on two major gastric membrane phospholipids, namely phosphatidylcholine and phosphatidylethanolamine.
    [Abstract] [Full Text] [Related] [New Search]