These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. I. The method.
    Author: Kozłowska U, Liwo A, Scheraga HA.
    Journal: J Comput Chem; 2010 Apr 30; 31(6):1143-53. PubMed ID: 20073062.
    Abstract:
    In this and the accompanying article, we report the development of new physics-based side-chain-rotamer and virtual-bond-deformation potentials which now replace the respective statistical potentials used so far in our physics-based united-reside UNRES force field for large-scale simulations of protein structure and dynamics. In this article, we describe the methodology for determining the corresponding potentials of mean force (PMF's) from the energy surfaces of terminally-blocked amino-acid residues calculated with the AM1 quantum-mechanical semiempirical method. The approach is based on minimization of the AM1 energy for fixed values of the angles lambda for rotation of the peptide groups about the C(alpha)...C(alpha) virtual bonds, and for fixed values of the side-chain dihedral angles chi, which formed a multidimensional grid. A harmonic-approximation approach was developed to extrapolate from the energy at a given grid point to other points of the conformational space to compute the respective contributions to the PMF. To test the applicability of the harmonic approximation, the rotamer PMF's of alanine and valine obtained with this approach have been compared with those obtained by using a Metropolis Monte Carlo method. The PMF surfaces computed with the harmonic approximation are more rugged and have more pronounced minima than the MC-calculated surfaces but the harmonic-approximation- and MC-calculated PMF values are linearly correlated. The potentials derived with the harmonic approximation are, therefore, appropriate for UNRES for which the weights (scaling factors) of the energy terms are determined by force-field optimization for foldability.
    [Abstract] [Full Text] [Related] [New Search]