These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of His143 in the catalytic mechanism of Escherichia coli aspartate aminotransferase. Author: Yano T, Kuramitsu S, Tanase S, Morino Y, Hiromi K, Kagamiyama H. Journal: J Biol Chem; 1991 Apr 05; 266(10):6079-85. PubMed ID: 2007566. Abstract: In aspartate aminotransferase (AspAT), His143 is located within a hydrogen-bonding distance to Asp222 that forms a strong ion pair with the ring nitrogen of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). His143 of Escherichia coli AspAT was replaced by Ala or Asn. The mutant enzyme H143A showed a slight increase in the maximum velocity of the overall transamination reaction between aspartate and 2-oxoglutarate, while H143N AspAT showed a decrease to 60% in the maximum rate of the overall reactions in both directions. In all of the half-transamination reactions with four substrates, aspartate, glutamate, oxalacetate, and 2-oxoglutarate, the catalytic competence as defined by kmax/Kd decreased by 3-18-fold upon replacing His143 by either Ala or Asn. The extent of the decrease varied from one substrate to another; it was largely contributed to by the decrease in affinities for all substrates. The equilibrium constants, [PMP-form] [keto acid]/[( PLP-form] [amino acid]), decreased by over 10-fold upon the mutations at position 143. Both H143A and H143N AspATs exhibited a considerably decreased affinity for 2-methylaspartate, an external-aldimine-forming substrate analogue, yet without appreciable alteration in the affinity for succinate and glutarate, which are non-aldimine-forming analogues. All these findings suggest that, although His143 is not essential for catalysis, it might assist the formation of enzyme-substrate complex.[Abstract] [Full Text] [Related] [New Search]