These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans. Author: Sese BT, Grant A, Reid BJ. Journal: J Toxicol Environ Health A; 2009; 72(19):1168-80. PubMed ID: 20077185. Abstract: The presence of polycyclic aromatic hydrocarbons (PAHs) in the environment has attracted much concern owing to their mutagenic and carcinogenic properties. Regulatory authorities have favored the use of biological indicators as an essential means of assessing potential toxicity of environmental pollutants. This study aimed to assess the toxicity of acenaphthene, phenanthrene, anthracene, fluoranthene, pyrene, and benzo[a]pyrene to Caenorhabditis elegans by measuring LC50 and EC50 values for growth and reproduction. The exposure to all chemicals was carried out in aqueous medium. All PAHs showed a low acute toxicity to C. elegans. There was no significant mortality in C. elegans after 24 h of exposure at PAH concentrations within (and indeed above) their respective solubility limits. Prolonged exposure (72 h) at high concentrations for acenaphthene (70,573 microg/L), phenanthrene (3758 microg/L), anthracene (1600 microg/L), fluoranthene (1955 microg/L), pyrene (1653 microg/L), and benzo[a]pyrene (80 microg/L) produced mortality. Results also showed that reproduction and growth were much more sensitive parameters of adverse response than lethality, and consequently may be more useful in assessing PAH toxicity using C. elegans. In comparison with previous studies, C. elegans was found to be approximately 2-fold less sensitive to acenaphthene, 5-fold less sensitive to phenanthrene, and 20-fold less sensitive to fluoranthene than Daphnia magna. However, the 48-h LC50 for benzo[a]pyrene (174 microg/L) reported in the present study with C. elegans was similar to that reported elsewhere for Daphnia magna (200 microg/L). Although C. elegans indicated greater sensitivity to benzo[a]pyrene than Artemia salina (174 microg/L vs. 10000 microg/L), the organism showed less sensitivity to pyrene (8 microg/L vs. 2418 microg/L), fluoranthene (40 microg/L vs. 2719 microg/L), and phenanthrene (677 microg/L vs. 4772 microg/L) than Artemia salina. Caenorhabditis elegans, while not the most sensitive of species for PAH toxicity assessment, may still hold applicability in screening of contaminated soils and sediments.[Abstract] [Full Text] [Related] [New Search]