These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence of lysosomal membrane permeabilization in mucopolysaccharidosis type I: rupture of calcium and proton homeostasis. Author: Pereira VG, Gazarini ML, Rodrigues LC, da Silva FH, Han SW, Martins AM, Tersariol IL, D'Almeida V. Journal: J Cell Physiol; 2010 May; 223(2):335-42. PubMed ID: 20082302. Abstract: Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of alpha-iduronidase (IDUA), which leads to intralysosomal accumulation of glysosaminoglycans. Patients with MPS I present a wide range of clinical manifestations, but the mechanisms by which these alterations occur are still not fully understood. Genotype-phenotype correlations have not been well established for MPS I; hence, it is likely that secondary and tertiary alterations in cellular metabolism and signaling may contribute to the physiopathology of the disease. The aim of this study was to analyze Ca(2+) and H(+) homeostasis, lysosomal leakage of cysteine proteases, and apoptosis in a murine model of MPS I. After exposition to specific drugs, cells from Idua-/- mice were shown to release more Ca(2+) from the lysosomes and endoplasmic reticulum than Idua+/+ control mice, suggesting a higher intraorganelle store of this ion. A lower content of H(+) in the lysosomes and in the cytosol was found in cells from Idua-/- mice, suggesting an alteration of pH homeostasis. In addition, Idua-/- cells presented a higher activity of cysteine proteases in the cytosol and an increased rate of apoptotic cells when compared to the control group, indicating that lysosomal membrane permeabilization might occur in this model. Altogether, our results suggest that secondary alterations-as changes in Ca(2+) and H(+) homeostasis and lysosomal membrane permeabilization-may contribute for cellular damage and death in the physiopathology of MPS I.[Abstract] [Full Text] [Related] [New Search]