These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A2A adenosine receptor stimulation decreases foam cell formation by enhancing ABCA1-dependent cholesterol efflux. Author: Bingham TC, Fisher EA, Parathath S, Reiss AB, Chan ES, Cronstein BN. Journal: J Leukoc Biol; 2010 Apr; 87(4):683-90. PubMed ID: 20089670. Abstract: Immune and inflammatory cells play a critical role in the pathogenesis of atherosclerotic plaques. We have demonstrated that A2ARs inhibit foam cell formation and stimulate production of ABCA1, the primary transporter of lipoproteins. We asked whether the effects of A2ARs on foam cell formation in vitro are mediated by transporters involved in reverse cholesterol transport, ABCA1 and ABCG1. Foam cells were generated from THP-1 cells by incubation with 100 nM PMA for 2 days and incubated with acLDL (50 microg/mL) plus IFN-gamma (500 U/mL) +/- A2AR agonist CGS-21680 (1 microM). Radiolabeled cholesterol (0.2 microCi/ml) was added to cells, and efflux was measured using a liquid scintillation counter. Lentiviral siRNA infection markedly reduces ABCA1 or ABCG1 mRNA in THP-1 cells. Despite diminished ABCG1 expression (KD), CGS-21680 inhibits foam cell formation (81+5% inhibition; P<0.0001 vs. IFN-gamma alone; n=3) but has no effect on foam cell formation in ABCA1 KD cells (5+3% inhibition; P<0.85 vs. IFN-gamma alone; n=3). The A2A agonist increases apoA-I-mediated cholesterol efflux nearly twofold in THP-1-derived macrophages (from 9.5% to 17.5+2.5% [3H]-cholesterol efflux; P<0.0090 vs. control; n=3) but not in ABCA1 KD cells. Activation of Epac, a signaling molecule downstream of the A2AR, increased ABCA1 (23+5%; P<0.0007 vs. control; n=3) and phospho-ABCA1 (13+5%; P<0.0003 vs. control; n=3) protein. These results demonstrate that A2AR occupancy diminishes foam cell formation by stimulating increased reverse cholesterol transport via ABCA1.[Abstract] [Full Text] [Related] [New Search]