These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Author: Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM, Gagen K, Gorski J, He S, Howard AD, Jian T, Jiang M, Kan Y, Kelly TM, Kosinski J, Lin LS, Liu J, Marsh DJ, Metzger JM, Miller R, Nargund RP, Palyha O, Shearman L, Shen Z, Stearns R, Strack AM, Stribling S, Tang YS, Wang SP, White A, Yu H, Reitman ML. Journal: Cell Metab; 2010 Feb 03; 11(2):101-12. PubMed ID: 20096642. Abstract: Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.[Abstract] [Full Text] [Related] [New Search]