These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual half-echo phase correction for implementation of 3D radial SSFP at 3.0 T. Author: Klaers J, Jashnani Y, Jung Y, Brodsky E, Jacobson J, Kijowski R, Block WF. Journal: Magn Reson Med; 2010 Feb; 63(2):282-9. PubMed ID: 20099322. Abstract: Fat/water separation methods such as fluctuating equilibrium magnetic resonance and linear combination steady-state free precession have not yet been successfully implemented at 3.0 T due to extreme limitations on the time available for spatial encoding with the increase in magnetic field strength. We present a method to utilize a three-dimensional radial sequence combined with linear combination steady-state free precession at 3.0 T to take advantage of the increased signal levels over 1.5 T and demonstrate high spatial resolution compared to Cartesian techniques. We exploit information from the two half-echoes within each pulse repetition time to correct the accumulated phase on a point-by-point basis, thereby fully aligning the phase of both half-echoes. The correction provides reduced sensitivity to static field (B(0)) inhomogeneity and robust fat/water separation. Resultant images in the knee joint demonstrate the necessity of such a correction, as well as the increased isotropic spatial resolution attainable at 3.0 T. Results of a clinical study comparing this sequence to conventional joint imaging sequences are included.[Abstract] [Full Text] [Related] [New Search]