These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic correlation between pressure-induced protein structural transition and water penetration. Author: Imai T, Sugita Y. Journal: J Phys Chem B; 2010 Feb 18; 114(6):2281-6. PubMed ID: 20099881. Abstract: Water penetration into the hydrophobic interior of proteins has been postulated to be a primary force driving pressure-induced denaturation of proteins. The water penetration model is supported by several theoretical and simulation studies, although its direct evidence is lacking. In this study, 1 micros all-atom molecular dynamics simulations of ubiquitin in explicit water at high and low pressures are performed to examine the water penetration model. The high-pressure simulation starts from a crystal structure at atmospheric pressure and successfully reproduces the main characteristics of a high-pressure structure obtained by NMR. Water penetrates into a specific hydrophobic core of the protein and is ejected from the interior several times. The structural transition results from the relative stabilization of a preexisting metastable structure by applying pressure. A time correlation analysis demonstrates that the transition is accompanied by the penetration of water within a time scale comparable to the relaxation time of water itself. Simultaneous water penetration only occurs above a certain high pressure.[Abstract] [Full Text] [Related] [New Search]