These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Macroscopic behavior of non-polar tetrahedratic nematic liquid crystals.
    Author: Brand HR, Pleiner H.
    Journal: Eur Phys J E Soft Matter; 2010 Jan; 31(1):37-50. PubMed ID: 20101516.
    Abstract:
    We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D(2d) symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is nonpolar. While this phase could resemble the classic D (infinityh) nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to nonpolar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. We also discuss the role of hydrodynamic rotations about the nematic director. For example, we show how strong external fields could alter the D(2d) symmetry, and describe the non-hydrodynamic aspects of the dynamics, if the two order structures, the nematic and the tetrahedratic one, rotate relative to each other. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.
    [Abstract] [Full Text] [Related] [New Search]