These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Study on the preparation and spectral characteristics of CeO2 nanocrystallines]. Author: Han QF, Chen L, Qiang F, Zhu WC, Xu B, Wang X. Journal: Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3011-4. PubMed ID: 20101975. Abstract: Ceria (CeO2) nanoparticles were prepared by precipitation method using cerium nitrate (Ce(NO3)3 x 6H2O) and ammonia (25 Wt%) as raw materials under the reaction for 3 h and ageing for 9 h at 80 degrees C without any surfactants and further calcination. The powder X-ray diffraction (XRD) pattern shows the as-prepared CeO2 crystals belong to the cubic phase and are well crystallized. Transmission electron microscopic (TEM) studies reveal that the appearance of as-prepared CeO2 is hexagonal, which is proposed to be the projection of polyhedral shape. The regular fringes spacing of 0.31 nm is in agreement with the d value of (111) lattice planes of cubic phase CeO2 from high-magnification TEM image. Reaction conditions such as the concentration of precipitant, reaction temperature and ageing duration exert important influence on the purity and morphology of the product. Ce(OH)3 was detected when the reaction was processed at lower pH (< 9) or with ageing duration less than 8 h at 80 degrees C. The size of polyhedral ceria nanoparticles increased with longer ageing time (> 15 h). If the reaction went on at a temperature lower than 40 degrees C, a large quantity of rodlike Ce(OH)3 was produced according to TEM observation. Raman spectra of CeO2 nanocrystallines exhibit a Raman shift at 465 cm(-1), corresponding to a F2g Raman band from the space group Fm3m of a cubic fluorite structure, while the Raman shift at about 600 cm(-1) may be attributed to the second Raman vibration mode of O2- vacancy due to Ce3+ impurity. Photoluminescence spectrum of CeO2 shows an emission at 465 nm at room temperature, which may be explained by charge transition from the 4f band to the valence band of CeO2.[Abstract] [Full Text] [Related] [New Search]