These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Density functional study of the proton transfer effect on vibrations of strong (short) intermolecular O-H...N/O-...H-N+ hydrogen bonds in aprotic solvents.
    Author: Kong S, Shenderovich IG, Vener MV.
    Journal: J Phys Chem A; 2010 Feb 18; 114(6):2393-9. PubMed ID: 20104882.
    Abstract:
    The structure and spectroscopic properties of the 1:1 complexes of substituted pyridines with benzoic acid and phenol derivatives in aprotic solvents are studied using B3LYP functional combined with the polarizable continuum model approximation. Two extreme structures are investigated: the state without (HB) and with proton transfer (PT). In the presence of an external electric field the O...N distance is contracted and the PT state does appear. The PT state of both the pyridine-benzoic and the pyridine-phenol complexes displays the only IR-active band in the 2800-1800 frequency region, which is located around 2000 cm(-1). However, the nature of the band is different for these two complexes. In the pyridine-benzoic acid complex it is practically a pure stretching vibration of the HN(+) group, while in the pyridine-phenol complex it is the mixed vibration of the bridging proton. A specific feature of the PT state in the pyridine-phenol complex is an IR-intensive band near 600 cm(-1), associated with the asymmetric stretching vibrations of the O(-)...HN(+) fragment. Its intensity is reciprocally proportional to the O...N distance. The appearance of this band provides an efficient criterion to differentiate between the HB and PT states of the 1:1 complexes of phenols with pyridines in aprotic solvents.
    [Abstract] [Full Text] [Related] [New Search]