These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A new heteroleptic ruthenium(II) polypyridyl complex with long-wavelength absorption and high singlet-oxygen quantum yield. Author: Zhou QX, Lei WH, Chen JR, Li C, Hou YJ, Wang XS, Zhang BW. Journal: Chemistry; 2010 Mar 08; 16(10):3157-65. PubMed ID: 20108277. Abstract: Ruthenium(II) polypyridyl complexes with long-wavelength absorption and high singlet-oxygen quantum yield exhibit attractive potential in photodynamic therapy. A new heteroleptic Ru(II) polypyridyl complex, [Ru(bpy)(dpb)(dppn)](2+) (bpy=2,2'-bipyridine, dpb=2,3-bis(2-pyridyl)benzoquinoxaline, dppn=4,5,9,16-tetraaza-dibenzo[a,c]naphthacene), is reported, which exhibits a (1)MLCT (MLCT: metal-to-ligand charge transfer) maximum as long as 548 nm and a singlet-oxygen quantum yield as high as 0.43. Steady/transient absorption/emission spectra indicate that the lowest-energy MLCT state localizes on the dpb ligand, whereas the high singlet-oxygen quantum yield results from the relatively long (3)MLCT(Ru-->dpb) lifetime, which in turn is the result of the equilibrium between nearly isoenergetic excited states of (3)MLCT(Ru-->dpb) and (3)pipi*(dppn). The dppn ligand also ensures a high binding affinity of the complex towards DNA. Thus, the combination of dpb and dppn gives the complex promising photodynamic activity, fully demonstrating the modularity and versatility of heteroleptic Ru(II) complexes. In contrast, [Ru(bpy)(2)(dpb)](2+) shows a long-wavelength (1)MLCT maximum (551 nm) but a very low singlet-oxygen quantum yield (0.22), and [Ru(bpy)(2)(dppn)](2+) shows a high singlet-oxygen quantum yield (0.79) but a very short wavelength (1)MLCT maximum (442 nm).[Abstract] [Full Text] [Related] [New Search]