These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular free Mg2+ concentration in skeletal muscle fibres of frog and crayfish. Author: Günzel D, Galler S. Journal: Pflugers Arch; 1991 Jan; 417(5):446-53. PubMed ID: 2011468. Abstract: The free intracellular Mg2+ concentration ([Mg2+]i) was investigated in frog sartorius and crayfish phasic and tonic skeletal muscle fibres, using a new Mg2(+)-sensitive microelectrode based on the ionophore ETH 5214 [Hu et al. (1989) Anal Chem 61:574-576]. In Ringer solution containing 0.5 mmol/l MgCl2, the mean [Mg2+]i of the frog muscle fibres was 1.3 mmol/l. In phasic crayfish muscle fibres, [Mg2+]i was about twice as high (mean 3.5 mmol/l) as in tonic fibres (mean 1.5 mmol/l), measured in van Harreveld solution containing 1.2 mmol/l MgCl2. Long-lasting (3-12 h) incubation of frog skeletal muscle fibres in Na(+)-free solution produced a reversible increase of [Mg2+]i by a factor of about 1.7. A tenfold rise of extracellular Mg2+ led to an increase in [Mg2+]i in the presence as well as in the absence of Na+. In these experiments, mean [Mg2+]i values of 3.2 mmol/l were never exceeded. Thus, [Mg2+]i remained at least 60 times lower than predicted from a passive distribution across the cell membrane. The results suggest the existence of a Na(+)-dependent and a Na(+)-independent Mg2+ extrusion mechanism, which is regulated by actual Mg2+ concentrations.[Abstract] [Full Text] [Related] [New Search]