These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding. Author: Perona JJ, Rould MA, Steitz TA, Risler JL, Zelwer C, Brunie S. Journal: Proc Natl Acad Sci U S A; 1991 Apr 01; 88(7):2903-7. PubMed ID: 2011598. Abstract: Detailed comparisons between the structures of the tRNA-bound Escherichia coli glutaminyl-tRNA (Gln-tRNA) synthetase [L-glutamine:tRNA(Gln) ligase (AMP-forming), EC 6.1.1.18] and recently refined E. coli methionyl-tRNA (Met-tRNA) synthetase [L-methionine:tRNA(Met) ligase (AMP-forming), EC 6.1.1.10] reveal significant similarities beyond the anticipated correspondence of their respective dinucleotide-fold domains. One similarity comprises a 23-amino acid alpha-helix-turn-beta-strand motif found in each enzyme within a domain that is inserted between the two halves of the dinucleotide binding fold. A second correspondence, which consists of two alpha-helices connected by a large loop and beta-strand, is located in the Gln-tRNA synthetase within a region that binds the inside corner of the "L"-shaped tRNA molecule. This structural motif contains a long alpha-helix, which extends along the entire length of the D and anticodon stems of the complexed tRNA. We suggest that the positioning of this helix relative to the dinucleotide fold plays a critical role in ensuring the proper global orientation of tRNA(Gln) on the surface of the enzyme. The structural correspondences suggest a similar overall orientation of binding of tRNA(Met) and tRNA(Gln) to their respective synthetases.[Abstract] [Full Text] [Related] [New Search]