These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A short yet very weak dative bond: structure, bonding, and energetic properties of N(2)-BH(3).
    Author: Smith EL, Sadowsky D, Phillips JA, Cramer CJ, Giesen DJ.
    Journal: J Phys Chem A; 2010 Feb 25; 114(7):2628-36. PubMed ID: 20121205.
    Abstract:
    The structure, bonding, and energetic properties of the N(2)-BH(3) complex are reported as characterized by density functional theory (DFT) and post-Hartree-Fock (HF) calculations. The equilibrium structure of the complex exhibits a short B-N distance near 1.6 A, comparable to that of a strong acid-base complex like H(3)N-BH(3). However, the binding energy is only 5.7 kcal/mol at the CCSD(T)/6-311+G(2df,2dp) level of theory, which is reminiscent of a weak, nonbonded complex. Natural bond orbital (NBO) and atoms in molecules (AIM) analyses of the electron density from both DFT and post-HF calculations do indicate that the extent of charge transfer and covalent character in the B-N dative bond is only somewhat less than in comparable systems with fairly large binding energies (e.g., H(3)N-BH(3) and OC-BH(3)). Energy decomposition analysis indicates key differences between the N(2), CO, and NH(3) complexes, primarily associated with the natures of the lone pairs involved (sp vs sp(3)) and the donor/acceptor characteristics of the relevant occupied and virtual orbitals, both sigma and pi. Also, CCSD/6-311+G(2df,2dp) calculations indicate that the B-N distance potential is rather anharmonic and exhibits a flat, shelf-like region ranging from 2.1 to 2.5 A that lies about 1.5 kcal/mol above the minimum at 1.67 A. However, this region is more sloped and lies about 2.5 kcal/mol above the equilibrium region according to the CCSD(T)/6-311+G(2df,2dp)//CCSD/6-311+G(2df,2dp) potential. A 1D analysis of the vibrational motion along the B-N stretching coordinate in the CCSD/6-311+G(2df,2dp) potential indicates that the average B-N distance in the ground vibrational state is 1.71 A, about 0.04 A longer than the equilibrium distance. Furthermore, the vibrationally averaged distance obtained via an analysis of the CCSD(T)/6-311+G(2df,2dp)//CCSD/6-311+G(2df,2dp) potential was found to be 0.03 A longer than the CCSD(T)/6-311+G(2df,2dp) minimum.
    [Abstract] [Full Text] [Related] [New Search]