These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography.
    Author: González-Darder JM, González-López P, Talamantes F, Quilis V, Cortés V, García-March G, Roldán P.
    Journal: Neurosurg Focus; 2010 Feb; 28(2):E5. PubMed ID: 20121440.
    Abstract:
    OBJECT: Nowadays the role of microsurgical management of intrinsic brain tumors is to maximize the volumetric resection of the tumoral tissue, minimizing the postoperative morbidity. The purpose of this paper was to study the benefits of an original protocol developed for the microsurgical treatment of tumors located in eloquent motor areas where the navigation and electrical stimulation of motor subcortical pathways have been implemented. METHODS: A total of 17 patients who underwent resection of cortical or subcortical tumors in motor areas have been included in the series. The preoperative planning for multimodal navigation was done by integrating anatomical studies, motor functional MR (fMR) imaging, and subcortical pathway volumes generated by diffusion tensor (DT) imaging. Intraoperative neuromonitoring included motor mapping by direct cortical stimulation (CS) and subcortical stimulation (sCS), and localization of the central sulcus by using cortical multipolar electrodes and the N20 wave inversion technique. The location of all cortically and subcortically stimulated points with positive motor response was stored in the navigator and correlated with the cortical and subcortical motor functional structures defined preoperatively. RESULTS: The mean tumoral volumetric resection was 89.1 +/- 14.2% of the preoperative volume, with a total resection (> or = 100%) in 8 patients. Preoperatively a total of 58.8% of the patients had some kind of motor neurological deficit, increasing 24 hours after surgery to 70.6% and decreasing to 47.1% at 1 month later. There was a great correlation between anatomical and functional data, both cortically and subcortically. A total of 52 cortical points submitted to CS had positive motor response, with a positive correlation of 83.7%. Also, a total of 55 subcortical points had positive motor response; in these cases the mean distance from the stimulated point to the subcortical tract was 7.3 +/- 3.1 mm. CONCLUSIONS: The integration of anatomical and functional studies allows a safe functional resection of the brain tumors located in eloquent areas. Multimodal navigation allows integration and correlation among preoperative and intraoperative anatomical and functional data. Cortical motor functional areas are anatomically and functionally located preoperatively thanks to MR and fMR imaging and subcortical motor pathways with DT imaging and tractography. Intraoperative confirmation is done with CS and N20 inversion wave for cortical structures and with sCS for subcortical pathways. With this protocol the authors achieved a good volumetric resection in cortical and subcortical tumors located in eloquent motor areas, with an increase in the incidence of neurological deficits in the immediate postoperative period that significantly decreased 1 month later. Ongoing studies must define the safe limits for functional resection, taking into account the intraoperative brain shift. Finally, it must be demonstrated whether this protocol has any long-term benefit for patients by prolonging the disease-free interval, the time to recurrence, or the survival time.
    [Abstract] [Full Text] [Related] [New Search]