These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Toll-like receptor 3 agonist protection against experimental Francisella tularensis respiratory tract infection.
    Author: Pyles RB, Jezek GE, Eaves-Pyles TD.
    Journal: Infect Immun; 2010 Apr; 78(4):1700-10. PubMed ID: 20123717.
    Abstract:
    We investigated whether Toll-like receptor 3 (TLR3) stimulation would protect the host from inhaled Francisella tularensis. TLR3 is expressed by respiratory epithelial cells and macrophages and can be activated by a synthetic double-stranded RNA ligand called polyinosine-polycytosine [poly(I:C)]. Thus, we evaluated poly(I:C) as a novel treatment against inhaled F. tularensis. In vivo, BALB/c mice intranasally (i.n.) treated with poly(I:C) (100 microg/mouse) 1 h before or after Schu 4 or LVS (100 CFU) i.n. challenge showed that poly(I:C) treatment significantly reduced bacterial load in the lungs (P < 0.05). Bronchoalveolar lavage from poly(I:C)-treated mice alone or combined with F. tularensis infection significantly increased cytokine secretion and enhanced neutrophil influx to lung tissues. Poly(I:C) responses were transient but significantly prolonged the survival of treated mice after i.n. F. tularensis challenge relative to mock treated animals. This prolonged survival providing a longer window for initiation of levofloxacin (LEVO) treatment (40 mg/kg). Animals treated with poly(I:C), challenged with F. tularensis, and then treated with LEVO 5 days later had 100% survival relative to 0% survival in animals receiving LEVO alone. Mechanistically, poly(I:C) given to human monocyte-derived macrophages before or after Schu 4 or LVS challenge (multiplicity of infection, 20:1) had significantly reduced intracellular bacterial replication (P < 0.05). These data suggest that poly(I:C) may represent a potential therapeutic agent against inhaled F. tularensis that prolongs survival and the opportunity to initiate standard antibiotic therapy (i.e., LEVO).
    [Abstract] [Full Text] [Related] [New Search]