These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dexamethasone facilitates lipid accumulation and mild feed restriction improves fatty acids oxidation in skeletal muscle of broiler chicks (Gallus gallus domesticus).
    Author: Wang X, Lin H, Song Z, Jiao H.
    Journal: Comp Biochem Physiol C Toxicol Pharmacol; 2010 May; 151(4):447-54. PubMed ID: 20138241.
    Abstract:
    Effects of dexamethasone (DEX) and mild feed restriction on the uptake and utilization of fatty acids in skeletal muscle of broiler chicks (Gallus gallus domesticus) were investigated. Male Arbor Acres chicks (7-days old, n=30) were injected with DEX or saline for 3days, and a feed restriction group was included. DEX enhanced circulating very low density lipoprotein (VLDL) level and the lipid accumulation in both adipose and skeletal muscle tissues. Compared with the control, liver-carnitine palmitoyltransferase 1 (L-CPT1) and AMP-activated protein kinase (AMPK) alpha2 mRNA level of M. biceps femoris (BF) were down-regulated significantly by DEX, while mRNA expression of lipoprotein lipase (LPL), fatty acid transport protein 1 (FATP1), heart-fatty acid binding protein (H-FABP), long-chain acyl-CoA dehydrogenase (LCAD), activities of LPL and AMPK in both skeletal muscles were not obviously affected. Feed restriction increased the mRNA expression of LPL, L-CPT1 and LCAD of M. pectoralis major (PM), and FATP1, H-FABP, L-CPT1 and LCAD of BF. In conclusion, DEX retards the growth of body mass but facilitates lipid accumulation in both adipose and skeletal muscle tissues. In contrast to the favorable effect of mild feed restriction, DEX did not alter the uptake of fatty acids in the skeletal muscle. The result suggests that DEX may promote intramyocellular lipid accumulation by suppressed fatty acid oxidation while mild feed restriction improved fatty acid oxidation in skeletal muscle, especially in red muscle. Glucocorticoids (GCs) regulated muscle fatty acid metabolism in a different way from energy deficit caused by mild feed restriction.
    [Abstract] [Full Text] [Related] [New Search]