These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Author: Kim MJ, Ciani S, Schachtman DP. Journal: Mol Plant; 2010 Mar; 3(2):420-7. PubMed ID: 20139158. Abstract: Reactive oxygen species (ROS) play an important role in root responses to potassium deprivation by regulating the expression of the high-affinity K(+) transporter gene AtHAK5 and other genes. Activation-tagged lines of Arabidopsis plants containing the AtHAK5 promoter driving luciferase were screened for bioluminescence under potassium-sufficient conditions. A member of the type III peroxidase family, RCI3, was isolated and when it was overexpressed by the activation tag, this led to the enhanced expression of luciferase and the endogenous AtHAK5. RCI3 was found to be up-regulated upon potassium deprivation. Plants overexpressing RCI3 (RCI3-ox) showed more ROS production and AtHAK5 expression whereas the ROS production and AtHAK5 expression were reduced in rci3-1 under K(+)-deprived conditions. These results suggested that RCI3 is involved in the production of ROS under potassium deprivation and that RCI3-mediated ROS production affects the regulation of AtHAK5 expression. This peroxidase appears to be another component of the low-potassium signal transduction pathway in Arabidopsis roots.[Abstract] [Full Text] [Related] [New Search]