These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Active transport of L-sorbose and 2-deoxy-D-galactose in Saccharomyces fragilis. Author: Jaspers HT, van Steveninck J. Journal: Biochim Biophys Acta; 1977 Sep 19; 469(3):292-300. PubMed ID: 20143. Abstract: Sorbose and 2-deoxy-D-galactose are taken up in Saccharomyces fragilis by an active transport mechanism, as indicated by the energy requirement of the process and the accumulation of free sugar against the concentration gradient. There are no indications for transport-associated phosphorylation as mechanism of energy coupling with these two sugars. The measured sugar-proton cotransport and the influx inhibition by uncouplers suggest a chemiosmotic coupling mechanism. Thus there are at least two different active transport mechanisms operative in Saccharomyces fragilis: transport-associated phosphorylation in the case of 2-deoxy-D-glucose and chemiosmotic coupling in the case of sorbose and 2-deoxy-D-galactose. The differences between the two mechanisms are discussed. Uncouplers do not stimulate downhill sorbose transport in energy-depleted cells and evoke an almost complete inhibition of efflux and of exchange transport. The differences between this sugar-proton cotransport system and similar systems in bacteria and Chlorella are discussed.[Abstract] [Full Text] [Related] [New Search]