These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for sub-pM detection.
    Author: Kurita R, Arai K, Nakamoto K, Kato D, Niwa O.
    Journal: Anal Chem; 2010 Mar 01; 82(5):1692-7. PubMed ID: 20143889.
    Abstract:
    This paper reports the development and characterization of a highly sensitive enzyme linked immunosorbent assay realized by the electrogenerated chemiluminescence (ECL) detection of a thiol monolayer formed by an enzyme labeled antibody. We used two monoclonal anti tumor necrosis factor-alpha (TNF-alpha) antibodies for a sandwich immunoassay. One was a capture antibody, and the other was a detection antibody labeled with an enzyme via an avidin-biotin interaction. Acetylcholinesterase was used as the labeling enzyme to convert acetylthiocholine to thiocholine. Then the thiocholine was collected on a gold electrode surface by gold-thiol binding. A bright and distinctive emission was observed at 1150 mV (vs Ag-AgCl) on the gold electrode with a thiocholine monolayer as a coreactant in the presence of tris(2,2'-bipyridyl)ruthenium complex. This method can greatly enhance the immunoassay signal since a large number of coreactant molecules can be generated by the enzymatic reaction, which is advantageous compared with a previously reported ECL based immunoassay that directly labels the detection antibody with a coreactant or luminophore. In addition, a surface accumulated coreactant is superior to the previously reported coreactant system in a bulk solution, because ECL emission occurs only very close to an electrode surface. As a result, high sensitivity and a low detection limit of 0.2 pM (3.4 pg/mL) TNF-alpha were achieved with excellent reproducibility by optimizing the conditions for the immuno-reaction, thiocholine accumulation, and ECL generation.
    [Abstract] [Full Text] [Related] [New Search]