These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking.
    Author: Liu J, Xie ZJ.
    Journal: Biochim Biophys Acta; 2010 Dec; 1802(12):1237-45. PubMed ID: 20144708.
    Abstract:
    The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The plant-derived CTS such as digoxin are valuable drugs for the management of cardiac diseases, whereas ouabain and marinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have demonstrated that the endogenous CTS are important regulators of renal Na(+) excretion and blood pressure. The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like effect of CTS on intracellular protein kinases and Ca(2+) signaling. Significantly, these CTS-provoked signaling events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and basolateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an important role in regulation of tubular Na(+) excretion under physiological conditions; conversely, a defect at either the receptor level (Na/K-ATPase) or receptor-effector coupling would reduce the ability of renal proximal tubular cells to excrete Na(+), thus culminating/resulting in salt-sensitive hypertension.
    [Abstract] [Full Text] [Related] [New Search]