These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The 'mother of thousands' (Kalanchoë daigremontiana): a plant model for asexual reproduction and CAM studies. Author: Garcês H, Sinha N. Journal: Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.emo133. PubMed ID: 20147034. Abstract: The genus Kalanchoë plays an important role in the investigation of biochemical, physiological and phylogenetic aspects of Crassulacean acid metabolism (CAM) in plants, which is an important evolutionary adaptation of the photosynthetic carbon assimilation pathway to arid environments. In addition, natural compounds extracted from tissues of Kalanchoë have potential applicability in treating tumors and inflammatory and allergic diseases, and have been shown to have insecticidal properties. Kalanchoë daigremontiana (Hamet & Perrier) originated in Madagascar and reproduces asexually by spontaneously forming whole plantlets on leaves. Plantlets develop symmetrically along the leaf margins on leaf notches, closely resembling zygotic embryos in development, and once the root system is formed, they detach from the mother-leaf, fall to the ground, and grow into new plants. This phenomenon is also found in other species from this same genus; however, the formation of leaf-plantlets is variable among species. Nevertheless, all species illustrate the remarkable ability of plant somatic cells to regenerate an entire organism, which has fascinated the scientific community for many years. It was only recently that the morphogenic process involved in the origin of K. daigremontiana plantlets was determined using molecular and genetic tools: K. daigremontiana forms plantlets by co-opting both organogenesis and embryogenesis programs into leaves. The ability of K. daigremontiana species to form somatic embryos outside of a seed environment provides an attractive model system to study somatic embryogenesis in nature, particularly the molecular mechanism involved in the acquisition of competence by vegetative cells to make embryos without fertilization.[Abstract] [Full Text] [Related] [New Search]