These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduced caloric intake during endotoxemia reduces arginine availability and metabolism. Author: Poeze M, Bruins MJ, Luiking YC, Deutz NE. Journal: Am J Clin Nutr; 2010 Apr; 91(4):992-1001. PubMed ID: 20147469. Abstract: BACKGROUND: Inadequate caloric intake increases the risk of sepsis-induced complications. Metabolic changes during sepsis indicate that the availability of the amino acid l-arginine decreases. Availability of arginine may further decrease during reduced caloric intake, which thereby limits the adaptive response of arginine-nitric oxide metabolism during sepsis. OBJECTIVE: We tested the hypothesis that reduced caloric intake during endotoxemia, as an experimental model for sepsis, further reduces arginine availability. DESIGN: In a randomized trial, a 7-d reduced caloric intake feed regimen (RE; n = 9) was compared with a normal control feed regimen (CE; n = 9), before 24 h of endotoxemia, as a model for sepsis. Whole-body arginine-nitric oxide metabolism and protein metabolism were measured by using a stable-isotope infusion of [(15)N(2)]arginine, [(13)C-(2)H(2)]citrulline, [(2)H(5)]phenylalanine, and [(2)H(2)]tyrosine. Plasma pyruvate and lactate concentrations were determined by fully automated HPLC. RESULTS: Pre-endotoxin arginine appearance was significantly lower in the RE group than in the CE group (P = 0.002). During endotoxemia, arginine appearance increased in the CE animals but not in the RE animals (P = 0.04). In addition, nitric oxide production was significantly lower in the RE animals (P < 0.0001). Protein synthesis was significantly lower at the start of endotoxin infusion (P < 0.05) and remained lower during endotoxemia in the RE group than in the CE group (P < 0.001). The lactate:pyruvate ratio was not higher in the RE group than in the CE group before endotoxemia but increased significantly during endotoxemia in the RE group (P = 0.04). CONCLUSION: A well-nourished condition before prolonged endotoxemia results in a better ability to adapt to endotoxin-induced metabolic deterioration of arginine-nitric oxide metabolism than does reduced caloric intake before endotoxemia.[Abstract] [Full Text] [Related] [New Search]