These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gene expression profiling during the byssogenesis of zebra mussel (Dreissena polymorpha). Author: Xu W, Faisal M. Journal: Mol Genet Genomics; 2010 Apr; 283(4):327-39. PubMed ID: 20148265. Abstract: Since its invasion to the North American waters 20 years ago, the zebra mussel (Dreissena polymorpha) has negatively impacted the ecosystems through its firm underwater adhesion. The molecular mechanisms governing the functions of the zebra mussel byssus, the main structure responsible for maintaining the underwater adhesion, have received little attention. Our previously developed zebra mussel foot byssus cDNA microarray was applied in this study to identify the genes involved in different stages of the byssal threads generation. Byssal threads of zebra mussels were manually severed under laboratory conditions and the formation of new byssal threads was followed over a 3 week course. By comparing the gene expression profiles in different stages of byssal threads generation (byssogenesis) to their baseline values, we found that the number of unique byssus genes differentially expressed at 12-h, 1, 2, 3, 4, 7, and 21 days post-treatment was 13, 13, 20, 17, 16, 20, and 29, respectively. Comparisons were also made between two subsequent samples (e.g., 12 h vs. 1, 1 vs. 2 days, 2 vs. 3 days, and so on). Seven differentially expressed genes were selected for validation by using quantitative reverse transcription PCR (qRT-PCR) and the results were consistent with those from the microarray analysis. By using fluorescent in situ hybridization, we found that two microarray identified genes, BG15_F03-DPFP and BG16_H05-EGP, were expressed in two major byssus glands located in the zebra mussel foot: the stem-forming gland and plaque-forming gland, respectively. Moreover, the qRT-PCR of seven microarray identified genes with different zebra mussel samples suggested that they were also expressed in other mussel tissues beside the foot, albeit at much lower levels. This suggested that the microarray identified genes were produced primarily by the foot, and were likely associated with byssogenesis. The differentially expressed genes identified in this study indicated that multiple molecules are involved in byssogenesis, most likely performing multiple functions during the generation of byssal threads. These results obtained herein represent the first logical step toward understanding underwater attachment mechanisms employed by this invasive species.[Abstract] [Full Text] [Related] [New Search]