These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arylsulfatase B regulates interaction of chondroitin-4-sulfate and kininogen in renal epithelial cells.
    Author: Bhattacharyya S, Kotlo K, Danziger R, Tobacman JK.
    Journal: Biochim Biophys Acta; 2010 May; 1802(5):472-7. PubMed ID: 20152898.
    Abstract:
    The enzyme arylsulfatase B (N-acetylgalactosamine 4-sulfatase; ASB; ARSB), which removes 4-sulfate groups from the nonreducing end of chondroitin-4-sulfate (C4S;CSA) and dermatan sulfate, has cellular effects, beyond those associated with the lysosomal storage disease mucopolysaccharidosis VI. Previously, reduced ASB activity was reported in cystic fibrosis patients and in malignant human mammary epithelial cell lines in tissue culture compared to normal cells. ASB silencing and overexpression were associated with alterations in syndecan-1 and decorin expression in MCF-7 cells and in IL-8 secretion in human bronchial epithelial cells. In this report, we present the role of ASB in the regulation of the kininogen-bradykinin axis owing to its effect on chondroitin-4-sulfation and the interaction of C4S with kininogen. Silencing or overexpression of ASB in normal rat kidney epithelial cells in tissue culture modified the content of total sulfated glycosaminoglycans (sGAGs), C4S, kininogen, and bradykinin in spent media and cell lysates. Treatment of the cultured cells with chondroitinase ABC also increased the secretion of bradykinin into the spent media and reduced the C4S-associated kininogen. When ASB was overexpressed, the cellular kininogen that associated with C4S declined, suggesting a vital role for chondroitin-4-sulfation in regulating the kininogen-C4S interaction. These findings suggest that ASB, owing to its effect on chondroitin-4-sulfation, may impact on the kininogen-bradykinin axis and, thereby, may influence blood pressure. Because ASB activity is influenced by several ions, including chloride and phosphate, ASB activity may provide a link between salt responsiveness and the bradykinin-associated mechanism of blood pressure regulation.
    [Abstract] [Full Text] [Related] [New Search]