These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan.
    Author: Takamatsu T, Watanabe M, Koshikawa MK, Murata T, Yamamura S, Hayashi S.
    Journal: Sci Total Environ; 2010 Mar 15; 408(8):1932-42. PubMed ID: 20153018.
    Abstract:
    Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)(i)/(X/Al)(BG) (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93)>or=Sb (4.06)>or=As (3.04)>Zn (1.71)>or=Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0)>Pb (12.4)>Cu (4.48)>or=As (3.43)>or=Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO(3)(-), which is a typical acidic air pollutant. There was a strong correlation between Sb and NO(3)(-) concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO(3)(-)]=21.1 [dissolved Sb], r=0.938, p<0.0001, n=182). Using this correlation, total (cumulative) inputs of NO(3)(-) were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7t/ha at Mt. Kinsyo (most polluted), 8.6t/ha at Mt. Tsukuba (moderately polluted), and 5.8t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at present. However, the concentrations of some elements are within a harmful range, according to the Ecological Soil Screening Levels determined by the U.S. Environmental Protection Agency.
    [Abstract] [Full Text] [Related] [New Search]