These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The assembly of a multisubunit photosynthetic membrane protein complex: a site-specific spin labeling EPR spectroscopic study of the PsaC subunit in photosystem I.
    Author: Jagannathan B, Dekat S, Golbeck JH, Lakshmi KV.
    Journal: Biochemistry; 2010 Mar 23; 49(11):2398-408. PubMed ID: 20158221.
    Abstract:
    The assembly of the PsaC subunit in the photosystem I (PS I) complex was studied using site-specific spin labeling electron paramagnetic resonance (EPR) spectroscopic techniques. The binding was monitored from the perspective of a reporter spin label attached to either the native C34(C) or the engineered C75(C) residue of wild-type PsaC (PsaC(WT)). Three distinct stages of PsaC assembly were analyzed: unbound PsaC, the P(700)-F(X)/PsaC complex, and the P(700)-F(X)/PsaC/PsaD complex. The changes in the EPR spectral line shape and the rotational correlation time of the spin label when PsaC(WT) binds to the PS I core are consistent with the conformational changes that are expected to occur during the assembly process. The addition of the PsaD subunit to the P(700)-F(X)/PsaC(WT-C34) complex induces further EPR spectral changes, which indicate that the presence of PsaD affects the orientation of the PsaC subunit on the PS I core. The binding of several PsaC variants, each lacking one or more key binding contacts with the PsaA/PsaB heterodimer, was monitored using a reporter spin label at C34(C). Our results indicate that the absence of the PsaC-PsaA/PsaB binding contacts causes PsaC to bind in an altered configuration on the PS I core. In particular, the removal of the entire C-terminus (PsaC(C-term)) causes PsaC to dock in a significantly different orientation when compared to the wild-type protein, as indicated by the EPR spectrum of the P(700)-F(X)/PsaC(C-term-C34) complex. Because the PsaC(C-term) variant retains only the symmetric network of PsaC-PsaA/PsaB ionic contacts, the altered EPR spectrum could, in principle, reflect a fraction of reaction centers that contain PsaC bound in the 180 degrees-rotated, C(2)-symmetry-related configuration. The results of this study are used to provide a comprehensive, stepwise mechanism for the binding of PsaC on the PS I core.
    [Abstract] [Full Text] [Related] [New Search]