These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thoracic aorta: prospective electrocardiographically triggered CT angiography with dual-source CT--feasibility, image quality, and dose reduction. Author: Blanke P, Bulla S, Baumann T, Siepe M, Winterer JT, Euringer W, Schäfer AO, Kotter E, Langer M, Pache G. Journal: Radiology; 2010 Apr; 255(1):207-17. PubMed ID: 20160003. Abstract: PURPOSE: To prospectively investigate the feasibility, image quality, and radiation dose for prospective electrocardiographically (ECG) triggered sequential dual-source computed tomographic (CT) angiography of the thoracic aorta in comparison to retrospective ECG-gated helical dual-source CT angiography. MATERIALS AND METHODS: This study was approved by the institutional review board; informed consent was obtained. One hundred thirty-nine patients referred for ECG-assisted dual-source CT angiography of the thoracic aorta were prospectively enrolled. Inclusion criteria were stable sinus rhythm and heart rate of 80 beats per minute or less. Tube voltage was adjusted to body mass index (< 25.0 kg/m(2), 100 kV, n = 58; > or = 25.0 kg/m(2), 120 kV, n = 81). In both cohorts, patients were randomly assigned to prospective or retrospective ECG-assisted data acquisition. In both groups, tube current (250 mAs per rotation) was centered at 70% of the R-R cycle. The presence of motion or stair-step artifacts of the thoracic aorta was independently assessed by two readers. Effective radiation dose was calculated from the dose-length product. RESULTS: Subjective scoring of motion and stair-step artifacts was equivalent for both techniques. Scan length was not significantly different (23.8 cm +/- 2.4 [standard deviation] vs 23.7 cm +/- 2.5 for prospective and retrospective ECG-triggered CT angiography, respectively; P = .54). Scanning time was significantly longer for prospective ECG-triggered CT angiography (18.8 seconds +/- 3.4 vs 16.4 seconds +/- 3.3, P < .001). Mean estimated effective dose was significantly lower for prospective data acquisition (100 kV, 1.9 mSv +/- 0.5 vs 4.1 mSv +/- 0.7, P < .001; 120 kV, 5.3 mSv +/- 1.1 vs 9.5 mSv +/- 3.0, P < .001). CONCLUSION: Prospective ECG-gated sequential dual-source CT angiography of the thoracic aorta is feasible, despite the slightly longer acquisition time. Thus, motion-free imaging of the thoracic aorta is possible at significantly lower radiation exposure than retrospective ECG-gated helical dual-source CT angiography in certain patients with a regular heart rate.[Abstract] [Full Text] [Related] [New Search]