These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of ubiquitination in Na,K-ATPase regulation during lung injury.
    Author: Helenius IT, Dada LA, Sznajder JI.
    Journal: Proc Am Thorac Soc; 2010 Feb; 7(1):65-70. PubMed ID: 20160150.
    Abstract:
    During acute lung injury edema accumulates in the alveolar space, resulting in hypoxemia due to intrapulmonary shunt. The alveolar Na,K-ATPase, by effecting active Na(+) transport, is essential for removing edema from the alveolar spaces. However, during hypoxia it is endocytosed and degraded, which results in decreased Na,K-ATPase function and impaired lung edema clearance. Na,K-ATPase endocytosis and degradation require the phosphorylation and subsequent ubiquitination of the Na,K-ATPase. These events are the results of cross-talk between post-translational modifications, and how ubiquitination of a specific protein can result from injurious extracellular stimuli. Here, we review current knowledge on the regulation of Na,K-ATPase activity during lung injury, focusing on the role of Na,K-ATPase ubiquitination during hypoxia. A better understanding of these signaling pathways can be of relevance for the design of novel treatments to ameliorate the deleterious effects of acute lung injury.
    [Abstract] [Full Text] [Related] [New Search]