These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ammonia Vapor Removal by Cu(3)(BTC)(2) and Its Characterization by MAS NMR. Author: Peterson GW, Wagner GW, Balboa A, Mahle J, Sewell T, Karwacki CJ. Journal: J Phys Chem C Nanomater Interfaces; 2009 Jul 01; 113(31):13906-13917. PubMed ID: 20161144. Abstract: Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu(3)(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu(3)(BTC)(2) framework. Indeed, (1)H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu(3)(BTC)(2) occurs to generate a composite spectrum consistent with Cu(OH)(2) and (NH(4))(3)BTC species under humid conditions-the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu(3)(BTC)(2) structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in (1)H and (13)C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu(3)(BTC)(2), much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity.[Abstract] [Full Text] [Related] [New Search]