These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Post-translational modification of glutamine and lysine residues of HIV-1 aspartyl protease by transglutaminase increases its catalytic activity.
    Author: Lentini A, Tabolacci C, Melino S, Provenzano B, Beninati S.
    Journal: Biochem Biophys Res Commun; 2010 Mar 12; 393(3):546-50. PubMed ID: 20170637.
    Abstract:
    The human immunodeficiency virus type 1 aspartyl protease (HIV-1 PR) is a homodimeric aspartyl endopeptidase that is required for virus replication. HIV-1 PR was shown to act invitro as acyl-donor and -acceptor for both guinea pig liver transglutaminase (TG, EC 2.3.2.13) and human Factor XIIIa. These preliminary evidences suggested that the HIV-1 PR contains at least three TG-reactive glutaminyl and one lysyl residues. We report here that the incubation of HIV-1 PR with TG increases its catalytic activity. This increase is dependent upon the time of incubation, the concentration of TG and the presence of Ca2+. Identification of epsilon-(gamma-glutamyl)lysine in the proteolytic digest of the TG-modified HIV-1 PR suggested intramolecular covalent cross-linking of this protease which may promote a non-covalent dimerization and subsequent activation of this enzyme via a conformational change. This hypothesis is supported by the observation that the TG-catalyzed activation of HIV-1 PR was completely abolished by spermidine (SPD) which acts as a competitive inhibitor of epsilon-(gamma-glutamyl)lysine formation. Indeed, in the presence of 1mM SPD the formation of the isopeptide was decreased of about 80%. The main products of the TG-catalyzed modification of HIV-1 PR in the presence of SPD were N(1)-mono(gamma-glutamyl)SPD and N(8)-mono(gamma-glutamyl)SPD. Negligible amount of N(1),N(8)-bis(gamma-glutamyl)SPD were found. The significance of these results is discussed with respect to the activation of the protease by post-translational modification and design of potential inhibitors.
    [Abstract] [Full Text] [Related] [New Search]