These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering.
    Author: Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F, Okano T.
    Journal: Biomaterials; 2010 May; 31(14):3903-9. PubMed ID: 20170957.
    Abstract:
    Reconstructing a vascular network is a common task for three-dimensional (3-D) tissue engineering. Three-dimensional stratified tissues were created by stacking cell sheets, and the co-culture with endothelial cells (ECs) in the tissues was found to lead to in vitro pre-vascular network formation and promoted in vivo neovascularization after their transplantation. In this study, to clarify the effect of tissue fabrication process on a pre-vascular network formation, human origin ECs were introduced into the stratified tissue in several different ways, and the behavior of ECs in various positions of the 3-D tissue were compared each other. Human umbilical vein endothelial cells (HUVECs), normal human dermal fibroblasts (NHDFs), and their mixture were harvested as an intact cell sheet from temperature-responsive culture dish at low-temperature (<20 degrees C). Single mono-culture EC sheet was stacked with two NHDF-sheets in different orders, and 3 co-cultured cell sheets were layered by a cell sheet collecting device. Morphological analyses revealed that pre-vascular networks composing of HUVECs were formed in all the triple layer constructs. Confocal microscope observation showed that the pre-vascular networks formed tube structures like a native microvasculature. These data indicate that the primary EC positioning in 3-D tissues may be critical for vascular formation.
    [Abstract] [Full Text] [Related] [New Search]