These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. Author: Lin YL, Dai ZK, Lin RJ, Chu KS, Chen IJ, Wu JR, Wu BN. Journal: Phytomedicine; 2010 Aug; 17(10):760-70. PubMed ID: 20171070. Abstract: Baicalin isolated from Scutellaria baicalensis is a traditional Chinese herbal medicine used for cardiovascular dysfunction. The ionic mechanism of the vasorelaxant effects of baicalin remains unclear. We investigated whether baicalin relaxes mesenteric arteries (MAs) via large-conductance Ca2+-activated K+ (BK(Ca)) channel activation and voltage-dependent Ca2+ channel (VDCC) inhibition. The contractility of MA was determined by dual wire myograph. BK(Ca) channels and VDCCs were measured using whole-cell recordings in single myocytes, enzymatically dispersed from rat MAs. Baicalin (10-100 microM) attenuated 80 mM KCl-contracted MA in a concentration-related manner. L-NAME (30 microM) and indomethacin (10 microM) little affected baicalin (100 microM)-induced vasorelaxations. Contractions induced by iberiotoxin (IbTX, 0.1 microM), Bay K8644 (0.1 microM) or PMA (10 microM) were abolished by baicalin 100 microM. In MA myocytes, baicalin (0.3-30 microM) enhanced BK(Ca) channel activity in a concentration-dependent manner. Increased BK(Ca) currents were abolished by IbTX (0.1 microM). Baicalin-mediated (30 microM) BK(Ca) current activation was significantly attenuated by an adenylate cyclase inhibitor (SQ 22536, 10 microM), a soluble guanylate cyclase inhibitor (ODQ, 10 microM), competitive antagonists of cAMP and cGMP (Rp-cAMP, 100 microM and Rp-cGMP, 100 microM), and cAMP- and cGMP-dependent protein kinase inhibitors (KT5720, 0.3 microM and KT5823, 0.3 microM). Perfusate with PMA (0.1 microM) abolished baicalin-enhanced BK(Ca) currents. Additionally, baicalin (0.3-30 microM) reduced the amplitude of VDCC currents in a concentration-dependent manner and abolished VDCC activator Bay K8644-enhanced (0.1 microM) currents. Baicalin produced MA relaxation by activating BK(Ca) and inhibiting VDCC channels by endothelium-independent mechanisms and by stimulating the cGMP/PKG and cAMP/PKA pathways.[Abstract] [Full Text] [Related] [New Search]