These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells.
    Author: Mariasegaram M, Tesch GH, Verhardt S, Hurst L, Lan HY, Nikolic-Paterson DJ.
    Journal: Biochem Biophys Res Commun; 2010 Mar 19; 393(4):855-9. PubMed ID: 20171171.
    Abstract:
    Lefty is a novel member of the transforming growth factor (TGF) supergene family which has the potential to antagonise actions of TGF-beta1 - the main factor driving fibrotic disease in the kidney and in other organs. TGF-beta1 can induce fibrosis through several mechanisms, including epithelial-mesenchymal transition (EMT) which contributes to myofibroblast accumulation in the renal interstitium. This study examined whether Lefty can antagonise TGF-beta1 mediated EMT. A rat tubular epithelial cell line (NRK52E) was stably transfected with a Lefty expression plasmid (52E-Lefty) or control plasmid (52E-Control). 52E-Control cells underwent TGF-beta1 induced EMT with up-regulation of alpha-smooth muscle actin (alpha-SMA), down-regulation of E-cadherin, and transition to an elongated fibroblast-like morphology. In contrast, 52E-Lefty cells were substantially protected from TGF-beta1 induced EMT. Analysis of signalling pathways showed that 52E-Lefty cells had a marked reduction in TGF-beta1 induced Smad activity and suppression of the secondary phase of JNK (but not p38) signalling. Treatment of NRK52E cells with a JNK inhibitor was shown to suppress TGF-beta1 induced EMT. In conclusion, Lefty can antagonise TGF-beta1 mediated EMT in renal tubular epithelial cells. Lefty may have potential as an anti-fibrotic molecule in the treatment of renal fibrosis.
    [Abstract] [Full Text] [Related] [New Search]