These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A rigid dinuclear ruthenium(II) complex as an efficient photoactive agent for bridging two guanine bases of a duplex or quadruplex oligonucleotide.
    Author: Rickling S, Ghisdavu L, Pierard F, Gerbaux P, Surin M, Murat P, Defrancq E, Moucheron C, Kirsch-De Mesmaeker A.
    Journal: Chemistry; 2010 Apr 06; 16(13):3951-61. PubMed ID: 20175157.
    Abstract:
    The rigid dinuclear [(tap)(2)Ru(tpac)Ru(tap)(2)](4+) complex (1) (TAP=1,4,5,8-tetraazaphenanthrene, TPAC=tetrapyridoacridine) is shown to be much more efficient than the mononuclear bis-TAP complexes at photodamaging oligodeoxyribonucleotides (ODNs) containing guanine (G). This is particularly striking with the G-rich telomeric sequence d(T(2)AG(3))(4). Complex 1, which interacts strongly with the ODNs as determined by surface plasmon resonance (SPR) and emission anisotropy experiments, gives rise under illumination to the formation of covalent adducts with the G units of the ODNs. The yield of photocrosslinking of the two strands of duplexes by 1 is the highest when the G bases of each strand are separated by three to four base pairs. This corresponds with each Ru(tap)(2) moiety of complex 1 forming an adduct with the G base. This separation distance of the G units of a duplex could be determined thanks to the rigidity of complex 1. On the basis of results of gel electrophoresis, mass spectrometry, and molecular modelling, it is suggested that such photocrosslinking can also occur intramolecularly in the human telomeric quadruplex d(T(2)AG(3))(4).
    [Abstract] [Full Text] [Related] [New Search]