These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study.
    Author: Hilt S, Henschke I, Rücker J, Nixdorf B.
    Journal: J Environ Qual; 2010; 39(2):725-33. PubMed ID: 20176845.
    Abstract:
    Feedback between submerged macrophytes and water transparency stabilizing the clear, macrophyte-dominated regime has been described so far for shallow lakes. Based on data of total phosphorus (TP) concentrations, underwater light supply, phytoplankton and submerged macrophyte abundance from narrow, stratified Lake Scharmützelsee (mean depth: 9 m, retention time: 16 yr) of the period 1994-2006 we hypothesize that submerged macrophytes may influence transparency and trophic state in deep lakes. The lake was characterized by summer epilimnion TP concentrations of 38 to 57 mug L(-1), turbid water due to mass development of cyanobacteria, and low abundance of few submerged macrophyte species until 2003. Thereafter, a sudden increase in water transparency was followed by a rapid submerged macrophyte colonization of the littoral down to about 5 m depth corresponding to the depth of a light supply of 3 E m(-2) d(-1). Initially, this recolonization was probably a consequence of decreased turbidity. We argue that the increase of submerged macrophyte coverage from < 10% in 1994 to 2003 to about 24% in 2005-2006 has contributed to the stabilization of the clear-water regime during the subsequent years. This is supported by the fact that earlier shifts to clear-water regimes in 1994 and 2000 without a significant spread of submerged macrophytes were not stable. We discuss potential mechanisms that may have resulted in a positive effect of plants on transparency such as P uptake and immobilization by the dominant rootless macrophyte species Nitellopsis obtusa and Ceratophyllum demersum and other macrophyte-related mechanisms such as increased zooplankton grazing and allelopathy.
    [Abstract] [Full Text] [Related] [New Search]